- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Bhargava, Rohit (3)
-
Kenkel, Seth (3)
-
Boppart, Stephen A (1)
-
Luthey-Schulten, Zaida (1)
-
Mittal, Shachi (1)
-
Tan, Kevin (1)
-
Thornburg, Zane R (1)
-
Wu, Tianyu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Many microscopic images and simulations of cells give results in different kinds of formats, making it difficult for people lacking computational skills to visualize and interact with them. Minecraft—known for its three-dimensional, open-world, voxel-based environment—offers a unique solution by allowing the direct insertion of voxel-based cellular structures from light microscopy and simulations into its worlds without modification. This integration enables Minecraft players to explore the ultrastructure of cells in a highly immersive and interactive environment. Here, we demonstrate several workflows that can convert images and simulation results into Minecraft worlds. Using the workflows, students can easily import and interact with a variety of cellular content, including bacteria, yeast, and cancer cells. This approach not only opens new avenues for science education but also demonstrates the potential of combining scientific visualization with interactive gaming platforms for facilitating research and improving appreciation of cellular structure for a broad audience.more » « lessFree, publicly-accessible full text available February 3, 2026
-
Kenkel, Seth; Bhargava, Rohit (, Chemical & Biomedical Imaging)
-
Kenkel, Seth; Mittal, Shachi; Bhargava, Rohit (, Nature Communications)Abstract Atomic force microscopy-infrared (AFM-IR) spectroscopic imaging offers non-perturbative, molecular contrast for nanoscale characterization. The need to mitigate measurement artifacts and enhance sensitivity, however, requires narrowly-defined and strict sample preparation protocols. This limits reliable and facile characterization; for example, when using common substrates such as Silicon or glass. Here, we demonstrate a closed-loop (CL) piezo controller design for responsivity-corrected AFM-IR imaging. Instead of the usual mode of recording cantilever deflection driven by sample expansion, the principle of our approach is to maintain a zero amplitude harmonic cantilever deflection by CL control of a subsample piezo. We show that the piezo voltage used to maintain a null deflection provides a reliable measure of the local IR absorption with significantly reduced noise. A complete analytical description of the CL operation and characterization of the controller for achieving robust performance are presented. Accurate measurement of IR absorption of nanothin PMMA films on glass and Silicon validates the robust capability of CL AFM-IR in routine mapping of nanoscale molecular information.more » « less
An official website of the United States government
